Издательство: Издательство Московского Университета, 2011
Иллюстратор: Чернецов В. А.
Переплёт: Твердый переплет, 510 страниц
Серия: Математика. Механика. Физика
Категория: Математические науки
ISBN: 978-5-211-05863-7
Тираж: 800
Формат: 242x172x26 мм, 754 г
📙 Книга посвящена всестороннему описанию вероятностных математических моделей хаотических процессов и методов их статистического анализа. Рассматривается удобный класс математических моделей стохастических хаотических процессов - подчиненные винеровские процессы (процессы броуновского движения со случайным временем). В качестве аргументации в пользу указанных моделей используется асимптотический подход, основанный на предельных теоремах для обобщенных дважды стохастических пуассоновских процессов (обобщенных процессов Кокса), которые в определенном смысле являются наилучшими математическими моделями неоднородных (и даже нестационарных) хаотических потоков на временных микромасштабах. Такой подход приводит к тому, что распределения приращений рассматриваемых процессов имеют вид сдвиг/масштабных смесей нормальных законов, и дает возможность получить не только сами формальные вероятностные модели хаотических стохастических процессов, но и в некотором смысле дать разумное теоретическое объяснение их адекватности на основе минимальных предположений о внутренней структуре изучаемых характеристик. На основе представления распределений (логарифмов) приращений процессов эволюции финансовых индексов или процессов плазменной турбулентности в виде смесей нормальных законов в книге предложена многомерная интерпретация волатильности рассматриваемых процессов. Для статистического анализа хаотических случайных процессов предложен метод скользящего разделения смесей (СРС-метод), который позволяет спонтанно разложить волатильность рассматриваемого процесса на динамический и диффузионные компоненты. Большое внимание уделено аналитическим и асимптотическим свойствам смесей нормальных распределений. Систематически рассматриваются статистические процедуры численного разделения смесей, такие как ЕМ-алгоритм и его модификации, сеточные методы разделения смесей. Обсуждаются вопросы оптимальной реализации этих методов. Рассмотрены примеры применения СРС-метода к анализу влияния информационных интервенций на финансовых рынках и к анализу данных, полученных в экспериментах с плазменной турбулентностью.