Обложка книги Python и машинное обучение. Машинное и глубокое обучение с использованием Python, scikit-learn, Рашка Себастьян, Мирджалили Вахид  
Поделись книгой!
 
Издательство: Вильямс, 2020
Переводчик: Артеменко Ю. Н.
Переплёт: Твердый переплет, 848 страниц
Категория: Машинное обучение. Анализ данных
ISBN: 978-5-907203-57-0
Формат: 245x180x41 мм, 1230 г
 
📗 Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения.

Книга наполнена четкими пояснениями, визуальными представлениями, работающими примерами и детально раскрывает все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения.

Третье издание книги обновлено с целью учета версии библиотеки TensorFlow 2 и последних добавлений в scikit-learn. Оно расширено для охвата двух самых современных методик машинного обучения: обучения с подкреплением и порождающих состязательных сетей.

Эта книга — ваш попутчик в машинном обучении с применением Python, будь вы разработчиком приложений на языке Python, не знакомым с машинным обучением, или разработчиком, желающим углубить свои знания в современных областях.

Основные темы книги
Фреймворки, модели и методики, которые позволяют машинам "учиться" на основе данных
Использование scikit-learn для машинного обучения и TensorFlow для глубокого обучения
Применение машинного обучения для классификации изображений, смыслового анализа, создания интеллектуальных веб-приложений и многого другого
Построение и обучение нейронных сетей, порождающих состязательных сетей и других моделей
Реализация веб-приложений с искусственным интеллектом
Выполнение очистки и подготовки данных для машинного обучения
Классификация изображений с использованием глубоких сверточных нейронных сетей
Рекомендуемые приемы для оценки и настройки моделей
Прогнозирование непрерывных целевых результатов с использованием регрессионного анализа
Обнаружение скрытых шаблонов и структуры в данных с помощью кластеризации
Углубление в текстовые данные и данные социальных сетей с применением смыслового анализа
Прикладное машинное обучение с прочным теоретическим фундаментом.

Новое издание пересмотрено и расширено с целью охвата TensorFlow 2, порождающих состязательных сетей (GAN) и обучения с подкреплением. Книга является всеобъемлющим руководством по машинному и глубокому обучению с использованием языка Python. Она служит как пошаговым учебным пособием, так и справочником, к которому вы постоянно будете возвращаться в ходе построения систем машинного обучения.

Книга наполнена четкими пояснениями, визуальными представлениями и работающими примерами, детально раскрывая все важные методики машинного обучения. В то время как некоторые книги учат вас следовать инструкциям, Рашка и Мирджалили излагают принципы, лежащие в основе машинного обучения, что позволит вам самостоятельно строить модели и приложения.

Обновленное с учетом библиотеки TensorFlow 2.0 третье издание предлагает читателям ознакомиться с ее новыми средствами API-интерфейса Keras, а также с последними добавлениями в scikit-learn. Оно расширено для охвата самых современных методик обучения с подкреплением, основанных на глубоком обучении, и введения в порождающие состязательные сети. Наконец, в книге также проводится исследование подобласти обработки естественного языка (NLP), называемой смысловым анализом, что поможет вам использовать алгоритмы машинного обучения для классификации документов.

Книга обсуждается в отдельном сообщении в блоге Виктора Штонда.
3-е издание.

Где найти книгу?

Мнения