📕 Este trabalho busca apresentar um método para previsão de séries temporais que se utiliza da estratégia de dividir para conquistar na busca da minimização do erro na previsão. O algoritmo proposto realiza a seleção de exemplos através da clusterização dos dados via rede de Kohonen, com estratégias para aumentar a densidade dos dados. Para cada cluster, é gerada automaticamente, através de algoritmos genéticos, uma rede previsora MLP (considerando atributos de entrada, janela de tempo, topologia da rede e calibragem dos parâmetros) otimizada para aquela classe. Também foram definidos dois comitês de máquinas que aliam as informações de semelhança entre os padrões de entrada advindas da clusterização com a combinação de conhecimentos dos especialistas obtida através da essência do comitê de máquinas. Todas as estratégias apresentadas constituem o portfólio de estratégias de previsão do sistema que utiliza uma seleção automática de previsores, dotada de uma grade tridimensional dos desempenhos dos mesmos, para definir qual a melhor estratégia para realizar a previsão de cada padrão de entrada apresentado. A avaliação do algoritmo foi realizada em séries temporais econômicas.