📕 Die Theorie des NEWToNschen Potentials von Massenverteilungen im Raum ist eines der ältesten Beispiele einer Verbindung von physikalischer Anschauung und mathematischer Interpretation. Bedeutende Mathematiker vieler
Generationen, wie C. F. GAUSS, H. POINCARE, D. lIILEERT, N. WIENER haben daran mitgearbeitet. Die Entwicklung der modernen Potentialtheorie ist auch wesentlich durch die Arbeiten von G. C. EVANS, M. RIEsz, O. FBOSTMAN, M. V.
KELDYs, M. BRELoT, H. CARTAN, J. DENY, G. CHOQUET, J. L. DooE, H. BAUER, C. CONSTANTINESCU, V. G. MAz 'JA, B. FUGLEDE und anderen bestimmt worden. Historische Darstellungen wurden z. B. in [K6], [A30], [B40] gegeben. Obwohl
einige Teile der Potentialtheorie heute als im wesentlichen abgeschlossen gelten, hat sich die Entwicklung in den letzten Jahren wieder erheblich verstärkt, seit sich viele ihrer leistungsfähigen Begriffe und Methoden durch
den zunehmenden Einsatz funktionalanalytischer Methoden auf weite Klassen von Problemen aus der Theorie der partiellen Differentialgleichungen anwenden lassen. Daneben sind in der Analysis auch davon unabhängige Bestrebungen
von potentialtheoretischem Charakter zu beobachten.