🔖 1. Das Jacobi-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. Konvergente Jacobi-Verfahren . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3. Konvergenzbeweis fUr zyklische Jacobi-Verfahren . . . . . . . . . . . . . . . . . . . 16 4. Zur Konvergenz von Zahlenfolgen . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5. Allgemeine Aussagen bei symmetrischen Matrizen . . . . . . . . . . . . . . . . . . . 28 6. Spezielle Aussagen fUr einen Schritt der Jacobi-Verfahren . . . . . . . . . . . . 37 7. Die Konvergenz der J acobi-Verfahren bei beliebiger Eigenwertverteilung 41 8. Beispiele. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 9. Tabellen, Literaturverzeichnis . . . . . . . . . . . . . . . . . . . " . . . . . . . . . . . . . . . , 52 5 Einleitung Im folgenden solI das Konvergenzverhalten der wichtigsten Jacobi-Verfahren zur Bestimmung der Eigenwerte symmetrischer Matrizen der Ordnung n (n ~ 2) untersucht werden. Behandelt werden das klassische Verfahren, die zyklischen Verfahren und die zyklischen Schwellenwertverfahren (cyclic methods with thresholds). FUr eine gro13e Anzahl zyklischer Verfahren wird ein neuer Konver genzbeweis gebracht, der im FalIe einfacher Eigenwerte sowie in gewissen Fallen auch bei Vorhandensein doppelter Eigenwerte quadratische Konvergenz liefert, wobei gleichzeitig die von A. Schönhag...