📘 Автор этой книги - давний исследователь искусственного интеллекта, специализирующийся на обработке естественного языка, революцию в котором сделало глубокое обучение. К сожалению, ему потребовалось много времени, чтобы это понять. Можно сказать в его оправдание, что нейронные сети угрожают революцией уже третий раз, а отнюдь не первый. Тем не менее автор внезапно оказался далеко позади и изо всех сил пытался наверстать упущенное. Именно поэтому он сделал то, что сделал бы на его месте любой уважающий себя профессор: запланировал преподавание материала и начал ускоренный курс, просматривая веб-страницы.Этим объясняется несколько выдающихся особенностей этой книги. Во-первых, краткость. Мы учимся медленно. Во-вторых, она сильно зависит от проекта. Многие публикации, особенно в области информатики, постоянно имеют противоречия между организацией темы и организацией материалов, связанных с конкретными проектами. Подобное разделение зачастую является хорошей идеей, но мы считаем, что материал по информатике лучше изучать при написании программ, поэтому книга во многом отражает привычки автора в преподавании. Таков был самый удобный способ написания книги, и мы надеемся, что многие из читателей тоже найдут ее полезной.Хотя многие практикующие в области информатики сочтут книгу полезной по той же причине, по которой автор ее написал в первую очередь как преподаватель, он верит своим ученикам, поэтому книга изначально задумана в качестве учебника для курса по глубокому обучению. Курс, который автор преподает в Брауне, предназначен как для выпускников, так и для других студентов, и охватывает весь материал. Здесь требуются как линейная алгебра, так и многомерное исчисление. Хотя фактическое количество материала по линейной алгебре не так уж велико, студенты сказали, что без него им было бы довольно сложно разобраться в многослойных сетях и необходимых им тензорах. Тем не менее многовариантное исчисление было им гораздо понятней. Это явно появляется только в главе 1, когда обратное распространение создается "с нуля", и не удивительно, если окажется полезной дополнительная лекция по частным производным. И наконец, есть предпосылка для вероятности и статистики. Это упрощает диспозицию, и автор, конечно же, хочет побудить студентов пройти такой курс. Автор также предполагает элементарные знания читателей по программированию на языке Python. Хотя этот материал не включен в книгу, но у автора есть дополнительная "лаборатория" по основам языка Python.