📙 Лекции вводят в многосеточные методы и их приложения к численному решению задач математической физики. Изучается геометрический многосеточный метод, включающий классические V- и W-циклы, и аддитивный многосеточный метод. Сначала теория применяется к простому примеру задачи Пуассона. Далее в лекциях рассматриваются более сложные дифференциальные задачи. Основным методом дискретизации служит метод конечных элементов. Теория иллюстрируется численными примерами и упражнениями.
Книга дополняет стандартные учебники по численным методам и рассчитана на студентов старших курсов и аспирантов. Может служить учебным пособием к практикуму по численным методам и основой для дополнительного курса. Материалы лекций будут полезны для исследователей в области численного анализа.